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We examine the dynamics of two-dimensional steep and breaking standing waves
generated by Faraday-wave resonance. Jiang et al. (1996) found a steep wave with a
double-peaked crest in experiments and a sharp-crested steep wave in computations.
Both waveforms are strongly asymmetric in time and feature large superharmonics. We
show experimentally that increasing the forcing amplitude further leads to breaking
waves in three recurrent modes (period tripling): sharp crest with breaking, dimpled or
flat crest with breaking, and round crest without breaking. Interesting steep waveforms
and period-tripled breaking are related directly to the nonlinear interaction between
the fundamental mode and the second temporal harmonic. Unfortunately, these
higher-amplitude phenomena cannot be numerically modelled since the computations
fail for breaking or nearly breaking waves. Based on the periodicity of Faraday waves,
we directly estimate the dissipation due to wave breaking by integrating the support
force as a function of the container displacement. We find that the breaking events
(spray, air entrainment, and plunging) approximately double the wave dissipation.

1. Introduction
Synthetic Aperture Radar (SAR) images are often brighter near ocean features

such as currents, shelves, and slicks that cause wave reflection and hence partial
standing-wave systems. Since the backscattering of microwaves by the sea surface
is sensitive to the curvature of surface features as well as Bragg periodicity, these
strong SAR returns may be caused by higher surface curvature known to occur in
standing waves that can be more peaked than progressive waves. Therefore, accurate
representation of steep standing waves (or counter-propagating waves in general) is
essential to the interpretation of SAR images. An even more complex phenomenon,
wave breaking, directly influences the specular and Bragg scattering of electromagnetic
radiation. Since counter-propagating waves are common in both open sea and coastal
regions, their breaking mechanisms are crucial to wave modelling, both deep water
and shoaling wave-breaking criteria, and energy dissipation. To this end, the breaking
standing wave and its energy dissipation serve as a good model to study.

A standing gravity wave on the free surface of an irrotational, inviscid deep liquid

† Present address: Intel Corp. M/S RA1-305, 5200 NE Elam Young Parkway, Hillsboro,
OR 97124, USA.
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has been described analytically by Penney & Price (1952) and Schwartz & Whitney
(1981). Based on the Stokes expansion, their solutions describe a standing wave with
a shape ranging from sinusoidal at modest amplitudes to one with a more peaked
crest and a flatter trough at higher amplitudes. The experiments of Taylor (1953) seem
to verify Penney & Price’s conjecture of a 90◦ crest angle for the extreme waveform.
However, studies by Schultz & Vanden-Broeck (1990) and Mercer & Roberts (1992)
suggested that the steepest wave has a crest sharper than 90◦. Schultz & Vanden-
Broeck (1990) and Schultz et al. (1998) further showed that standing waves with very
small surface tension can exhibit wave steepness much higher than the limiting wave
steepness of gravity waves. Steep gravity–capillary standing waves feature a flat crest
and sometimes a bulbous protuberance.

In his experiments, Taylor (1953) generated standing waves by simultaneously
oscillating two hinged vertical paddles. Standing waves can also be excited by vertical
oscillation through subharmonic resonance, i.e. Faraday waves (Benjamin & Ursell
1954; Miles & Henderson 1990). The linear stability of Faraday waves is described
by the detuning parameter p and forcing parameter q

p =
4ω2

i

ω2
f

, q = 2Fki tanh kih,

where ωf is the forcing frequency and F is the forcing amplitude. The linear natural

frequency is defined by ωi =
[
gki(1 + κk2

i ) tanh(kih)
]1/2

, where h is the water depth,

ki is the wavenumber and κ = σk2/ρg is the dimensionless inverse Bond number.
Here σ represents surface tension, ρ represents fluid density, and g is the gravitational
acceleration. The subharmonic resonance corresponds to p ≈ 1 for the i th spatial
mode with wavenumber ki = 2πi2λ−1, where λ is the fundamental wavelength. In the
following, we denote the linear natural (cyclic) frequency for the fundamental mode
by fN = ω1/2π.

Owing to the laterally fixed vertical endwalls, Faraday-wave experiments more
accurately model the spatial periodicity of standing waves. Schultz et al. (1998)
adopted this approach and found good agreement with their calculation when the
amplitude dispersion curve for free standing waves, ω = ω(H/λ), is closely followed
in the experiments. The nonlinear wave (radian) frequency ω is a function of wave
steepness H/λ, where H is the wave height and λ is the wavelength. Three-dimensional
effects that prevented Taylor from obtaining steeper waves are avoided by using a
rectangular tank with a large aspect ratio.

Steep waves can be generated with a frequency close to the linear natural frequency
fN by simply increasing the amplitude of the vertical forcing. Jiang et al. (1996)
found that dimpled crests appear in the steep wave profile and the waveforms be-
come asymmetric in time. An example is shown later in figure 6. Temporal symmetry
is broken by dissipation, but obvious asymmetries occur only for steep waves with
dimpled crests. Jiang et al. (1996) further demonstrated through both experiments
and fully nonlinear simulation that the interaction between the first two temporal
harmonics is responsible for the appearance of dimpled crests and strong tempo-
ral asymmetry. These steep waveforms disagree with Taylor’s experiments and are
not described by any nonlinear standing wave models. Previous asymptotic analyses
are valid only when resonance between different harmonics can be ‘avoided’ (Tad-
jbakhsh & Keller 1960). Likewise, symmetry in time is either implicitly or explicitly
assumed in asymptotic expansions (Schwartz & Whitney 1981) and numerical solu-
tions (Mercer & Roberts 1992). Recently Bryant & Stiassnie (1994) discussed multiple
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Figure 1. Locations in parameter space of the various waveforms in Faraday-wave experiments.
The solid line represents the neutral-stability curve measured from experiments.

solutions of small-amplitude standing waves due to harmonic resonance using the
Zakharov equations. We thus expect harmonic interaction to be more significant when
standing waves become strongly nonlinear, leading to new waveforms.

Steep standing waves undergo a surprising transformation at even larger forcing.
Small plunging breakers first appear to each side of the dimpled crest. A further
increase in forcing amplitude leads eventually to period tripling with breaking every
two out of three waves. The existence regime for period tripling is shown in figure 1
– an improvement of the p, q diagram of Jiang et al. (1996). The stability boundary
should be centred around p = 1; however, the measured neutral-stability curve in
figure 1 is shifted downward due to contact-line effects (Jiang et al. 1996). Here, all
experiments including those with period-tripled breaking are limited to within the
neutral-stability curve.†

This paper is organized as follows. The experimental techniques are described
in § 2. To estimate the wave dissipation, especially dissipation due to breaking, we
measure directly the energy–dissipation balance (§ 2.2). Temporal asymmetry and
strong second temporal harmonics are first shown in § 3 for steep waves without
breaking. The three distinct wave forms during period-tripled breaking are then
described in § 4 and compared with non-breaking waves. From Fourier analysis and
complex demodulation, we gain additional insight into the dynamics of period tripling,
particularly the interaction between the fundamental mode and its second temporal
harmonic (§ 4.3). Results of direct dissipation measurements are presented for both
non-breaking and breaking waves in § 5.

2. Experimental techniques and apparatus
We use essentially the same experimental setup as Jiang et al. (1996) with the

addition of a load cell described in § 2.2. Figure 2 shows all relevant hardware except
for the shafts and linear bearings positioned outside the tank for lateral support.
The tank is guided vertically by six rolling stabilizers (two on the front, two on the
sides and two on the rear) to reduce lateral displacement. The inner dimensions of

† Due to hysteresis effects, waves can be generated even with p > 1 and (p, q) lying outside
the neutral-stability curve by continuously changing forcing frequency or forcing amplitude. The
hysteresis can be caused by either contact-line effects as shown by Jiang et al. (1996) or by the
intrinsic nonlinear effect of standing waves (Decent & Craik 1995). The present experiments all
start from quiescent condition with fixed forcing amplitude and frequency. Therefore no data are
obtained when (p, q) lie outside the neutral-stability curve.
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Figure 2. Experimental schematic of the tank, illumination, and imaging system (not to scale). The
spherical lens has a focal length of 1000 mm, the cylindrical lens has a focal length of 6.35 mm.

the rectangular glass tank are 600 mm long, 60 mm wide and 483 mm deep. The
water depth is approximately 300 mm. With negligible lateral vibration (less than
3% of the vertical excitation), this 10:1 tank aspect ratio ensures that the waves
are two-dimensional. We generate the fundamental wave mode (k = k1) with one
wavelength in the tank to preserve spatial symmetry about the tank centreline.

The natural frequency of the 60 cm wave is fN = ω1/2π = 1.611 Hz. The forcing
frequencies are within the range 2f = 3.24±0.10 Hz where f represents the frequency
of the forced subharmonic wave. The tank is fixed to a programmable shaker that
is best suited to operate in a low frequency range: 0.5 Hz to 5.0 Hz. The shaker is
driven by a brushless servo motor with a low-mass, high-performance Magnequench
armature. The driving mechanism is a ball-screw assembly. A linear response is
obtained for forcing amplitudes between 1 mm and 10 mm. The control system
includes a Macintosh computer with National Instruments’ LabVIEW software, data
acquisition boards, and a transducer that measures the vertical displacements of the
tank. More details about the shaker setup can be found in Jiang et al. (1996). In
a typical feedback signal, shaker displacement amplitudes of the second, third, and
fourth harmonics are 0.6, 2.8 and 0.3% of the fundamental harmonic amplitude. The
relatively large third-harmonic forcing was also reported in Jiang et al. (1996), but its
magnitude is not altered by the presence of wave excitation and is therefore a natural
characteristic of the wavemaker. The corresponding third-harmonic wave response is
negligible as shown in Jiang et al. (1996) and in the wave spectrum of § 4.2.

2.1. Wave measurements

Spatial surface profiles are obtained by a laser-sheet measurement technique (Perlin,
Lin & Ting 1993). The imaging system in figure 2 includes a 5 W Argon-Ion laser,
attendant optics and a high-speed, 8-bit video system with an intensified imager. We
use a spherical lens to focus the laser beam and a cylindrical lens to expand the laser
beam into a sheet. The laser sheet is introduced from above the water, parallel to the
front glass wall. It illuminates the central plane of the tank with a thickness less than
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0.5 mm at the still water level. The added dye (fluorescein) in the water fluoresces
under the laser sheet and generates a light-intensity jump at the free surface. In
experiments with complicated breaking wave forms, we also use silver-coated hollow
glass spheres (10 µm mean diameter) as seeding particles to better illuminate the entire
central plane below the free surface.

To help avoid surface contamination, the tank is scrubbed before and after each use
with ethyl alcohol. Our treated water is de-ionized, carbon-adsorbed, and 0.2 micron
filtered to maintain a surface tension of 72 dynes cm−1 at room temperature, close
to that for pure water. The surface tension decreases to about 71 dynes cm−1 after
the addition of fluorescein. By comparing video images of steep standing waves with
and without dye, we verify that the small change in surface tension does not cause
perceptible changes in the wave profiles. The surface tension is further reduced by less
than 0.5 dynes cm−1 with particles in the water (Ting & Perlin 1995). The particles
are only used to illustrate features of breaking waves. Addition of dye also increases
the wave damping from 0.05 s−1 to 0.07 s−1 as shown in Jiang et al. (1996). However,
the qualitative behaviour of standing wave breaking does not appear to be affected
by either particle or dye addition.

We use a Kodak Ektapro CID intensified imager with controller to record the wave
profile and use the Ektapro EM 1012 recorder for storage. The image is composed
of 239 horizontal pixels by 192 vertical pixels. To capture the entire surface, we use a
50 mm camera lens on the intensified imager with the camera located approximately
2.6 m from the tank. Its optical axis is oriented perpendicular to the intersection of
the laser sheet and the quiescent water surface and at about a 15◦ angle with respect
to the mean water surface (to remove any obstructing influence from the meniscus
on the front glass wall). Using a precise target shows no significant image distortion
of the surface in either direction. The average image resolution for this experimental
setup is 2.66 mm/pixel and the measurement error is about one pixel. The recording
speed is chosen from 50 frames/s to 250 frames/s. The images are transferred to
computer via a standard GPIB interface and the wave profiles are then extracted
from the images using an edge-detection program and running-average smoothing.

For the time histories of surface elevation at the tank centre, we use a fixed
capacitance-type wave probe with an outside diameter of 1.6 mm positioned at the
horizontal centre of the tank. The measurement error is less than 1% of the typical
wave height. The probe and feedback signals are low-pass filtered using two Krohn–
Hite model 3342 analog filters with a cutoff frequency of 30 Hz. Then, the feedback
signal is subtracted from the probe signal to obtain the actual surface elevation with
respect to the tank.

2.2. Force and wave dissipation determination

The support force is measured by an Omega LCCA-100 load cell (strain gauge)
placed beneath the tank centroid and on the shaker (see figure 2). Its specifications
in percentage of full scale are: 0.03% nonlinearity, 0.02% hysteresis, and 0.02% non-
repeatability. The load cell has a maximum capacity of 445 N, sufficient for the total
weight of tank and water (294 N) and the accelerations used. To obtain accurate
work estimates, both the force and displacement signals are sampled at 300 Hz. The
two time series are processed by the same dual-channel Krohn–Hite 3342 low-pass
filter with the same cut-off frequency (100 Hz) to avoid phase lag. (The measured
force contains higher harmonics in the range of 12 Hz to 25 Hz that are attributed
to the natural vibration of the tank and shaker.) We obtain the energy (work) input
to the system by integrating force with respect to the tank displacement using the
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Stage Wave field Work–dissipation balance

1 None excited W1 = mechanical loss
2 Wave growth W2 = W1 + ∆E(t)+D(t)
3 Periodic waves (F < Fb) W3 = W1 + D(t)

or double-plunger periodic breaking (F ≈ Fb)
or quasi-periodic breaking (F > Fb)

Table 1. Three stages of wave excitation and the corresponding Wi, work per unit wave period.
∆E(t) and D(t) represent energy increase and wave dissipation over one wave period, respectively.
Fb is the threshold shaker stroke amplitude for breaking.

Stage 1 Stage 3Stage 2

Time

W1

W3

W

Figure 3. Schematic of the work input as a function of time during a complete experiment with
fixed forcing parameters.

trapezoidal rule. Dissipation due to wave motion and breaking is then estimated using
the following procedure.

A complete experiment at fixed forcing parameters unfolds in three stages (table 1
and figure 3). The measured work per unit wave period (Wi for each stage i=1, 2, 3)
is separated into wave energy (E), wave dissipation (D) and mechanical losses. In
stage 1, the tank is oscillated but no wave growth is observed; therefore both the wave
energy E and the wave dissipation D are negligible. W1 represents the mechanical
losses due to bearing dissipation, friction and other forces that are unrelated to the
fluid motion in the tank. During wave growth (stage 2), W2 typically overshoots
and then slowly decays to a new finite value (figure 3). Part of this work input
is converted into wave energy E(t). Determining the wave energy E(t) is generally
difficult; however, an estimate of D can be obtained from stage 3 that does not
require the value of E(t). Since the wave field is periodic in stage 3, E remains
constant and W3 is balanced by wave dissipation D and mechanical loss. Assuming
that the mechanical loss is equal to that in the first stage, W1, the wave dissipation is
then determined by D = W3 −W1.

Typical force–displacement diagrams are shown in figures 4(a) and 4(b) representing
W1 and W3, respectively. Two work cycles (two forcing periods) are shown in each
diagram, and each cycle can be divided into four areas representing positive and
negative work. The four areas reflect the existence of higher force harmonics due to
mechanical vibrations. Comparison of figures 4(a) and 4(b) shows the dominance of
mechanical losses (W1) in the total work and a larger work input in stage 3 because of
the wave dissipation. The force–displacement curves in figure 4(b) are slightly different
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Figure 4. The force–displacement diagrams during two consecutive forcing cycles (one wave cycle).
+, Positive work area. Areas without sign represent negative work. The arrows denote loop direction.
f = ω/2π = 1.60 Hz. (a) Stage 1 (F = 4.15 mm), no wave excited, (b) Stage 3 (F = 4.15 mm),
periodic wave field without breaking. (c) Stage 3 (F = 4.51 mm), period-tripled breaking. Note that
F in (c) is different from F in (a, b).

during two consecutive forcing cycles.† However, the total work (net positive area)
for each forcing cycle differs only by 1%. A low-pass filter with a cut-off frequency
of 30 Hz is applied for smoothing.

The aforementioned technique is based on a balance between energy input and
energy dissipation, and therefore it only applies to periodic wave fields. Breaking-
wave dissipation would be difficult to measure because of the irreversible breaking
process. Fortunately, the breaking waves in our experiments are periodic! Near the
threshold forcing amplitude Fb, Jiang et al. (1996) observed double plungers at the
crest, but the waveform remains temporally and spatially periodic. Period-tripled
breaking appears at a slightly larger forcing with breaking waves every two out of
three wave cycles as will be shown in § 4. The energy balance for breaking waves
is then similar to that for non-breaking waves (table 1), except that D represents
the breaking-wave dissipation averaged over three wave periods. Figure 4(c) shows
W3 during period-tripled breaking and a corresponding increase in the work input
owing to breaking-wave dissipation. The work loop over one wave cycle is shown
here. The force–displacement curves for all three breaking-wave modes shown in § 4
are qualitatively similar to figure 4(c) with slightly different net positive areas.

Owing to bearing friction and other friction caused by the start-up process, the
integrated work per wave cycle (W1) has a 7% standard deviation. For non-breaking
periodic waves, the standard deviation of W3 is 2.5%. For the triply-periodic breaking,
however, the standard deviation increases due to the unsteady nature of breaking.
Dissipation rates are discussed in § 5.

3. Steep standing waves
We first discuss the steep Faraday wave, as its waveform and temporal asymmetry

are related directly to wave breaking discussed later. The spatial and temporal

† The measured forces at t0 and t0 +T/2 (where T is the temporal wave period) are not quite the
same even though the tank motion nominally repeats after one half wave period. For non-breaking,
periodic waves, we observed approximately the same profile at t0 and t0 +T/2 with a λ/2 horizontal
shift (see figures 15, 16, and 17 in Jiang et al. 1996). Integrated wave properties should then be
T/2-periodic, including the wave-induced pressure on the tank bottom and the friction on the front
and back walls. The different force measurement in the two half wave periods (figure 4b) is probably
caused by the boundary layers on the two endwalls where this temporal half-periodicity is broken.
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Figure 5. Experimental wave profiles with (a) increasing and (b) decreasing elevation at the
centreline. The time interval between each profile is 0.04 s. f = ω/2π = 1.615 Hz, F = 3.85 mm.
(From Jiang et al. 1996.)

symmetries are defined by η(x, t) = η(x,−t) = η(−x, t) where a crest occurs at x = 0,
t = 0. Both symmetries are preserved in the Penney & Price (1952) solution. Jiang
et al. (1996) observed Faraday waves that are significantly asymmetric about t = 0.
Typical profiles extracted from figure 17 of Jiang et al. (1996) are shown in figure 5.
The wave crest is more peaked (figure 5a) for increasing elevation at x = 0, but
a dimpled crest appears and remains for decreasing elevation at x = 0 (figure 5b).
These waves appear when the wave steepness H/λ exceeds 0.15. Here H represents
the peak-to-peak wave height measured at x = 0.

The dimpled crest and broken temporal symmetry reflect the interaction between
the fundamental mode and its second harmonic in time. To illustrate this, we express
the surface elevation η(0, t) for periodic waves with frequency ω as

η(x = 0, t) = η0 + a1 cos(ωt+ θ1) + a2 cos(2ωt+ θ2) + · · · , (3.1)

where the phase shifts of the first and second harmonic are θ1 and θ2 and the
associated amplitudes are a1 and a2, respectively. The time-averaged elevation η0 is
non-zero for finite-amplitude waves. The phase-shift difference θ2 − 2θ1 is defined to
be within [0, 2π). Penney & Price (1952) restricted the second harmonic to be higher
order and θ2 − 2θ1 = 0. Therefore their solution describes a non-dimpled crest even
for steep waves. The temporal symmetry is preserved in (3.1) only for θ2 − 2θ1 = 0
or π.

Harmonic amplitudes and phases shown in figure 6 are obtained from Fourier
analysis of the measured η(0, t). Although the phase angles θ2 and θ1 depend on the
starting point of a particular time series, the phase-shift difference θ2 − 2θ1 does not
and remains constant in time for periodic waves. Figure 6(c) shows this phase shift
as a function of the forcing amplitude. The forcing frequency is fixed at 3.22 Hz.
After the wave crest becomes flat, θ2 − 2θ1 decreases steadily with increasing forcing
amplitude. Values other than zero or π indicate temporal asymmetry even at moderate
wave amplitudes (small forcing). These waves appear symmetric only because a2 is
insignificant as shown in figure 6(b). Increasing nonlinearity leads to larger a2 and
a dimpled crest. The temporal asymmetry then becomes apparent for larger forcing.
The amplitude ratio a2/a1 in figure 6(b) grows more slowly for increasing F when
breaking occurs (F > 4.60 mm in figure 6a). Note that when period-tripled breaking
occurs, additional terms corresponding to the f/3 frequency should be added to
(3.1). The harmonic amplitudes and phases shown in figure 6 only represent averaged
values over the FFT window.

The numerical simulation of Jiang et al. (1996) reveals a different steep waveform
with a sharply peaked crest at the maximum position (see their figure 19). The sharp
crest reflects a different pattern of temporal-symmetry breaking, i.e. the phase-shift
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Figure 6. Effect of forcing amplitude on waveforms (f = ω/2π = 1.61 Hz). (a) Wave height H ,
(b) ratio of the harmonic amplitudes a2 and a1, (c) phase-shift difference θ2 − 2θ1.

difference θ2− 2θ1 is neither zero nor π nor the value obtained above for the dimpled
wave form. These differences may be due to the inadequate Rayleigh-damping model
used by Jiang et al. (1996). However, the interaction between harmonics is apparent in
both experiments and numerics, and the disparate forms of steep standing waves may
indicate multiple solutions. The importance of harmonic interaction will be examined
again using complex demodulation in the discussion of standing wave breaking (§ 4.3).

4. Breaking standing waves
There are essential differences between breaking in unidirectional travelling waves

and standing waves. Travelling gravity waves seldom attain the limiting Stokes wave-
form prior to the initiation of breaking. One mechanism for the breaking of a single
travelling wave is the superharmonic instability that leads to front-face steepening
and the formation of a spilling breaker or a plunging breaker. Crest asymmetry also
exists for short gravity and gravity–capillary wavelengths with parasitic ripples on the
front face (e.g. Longuet-Higgins 1963; Perlin et al. 1993).

Asymmetric breaking is less likely to occur in a standing wave because of its
inherent spatial symmetry. When gentle breaking occurs for standing waves, a spiller
forms at the crest before it changes into a dimpled form and a subsequent double
plunger breaks outward from the centre (figure 21 in Jiang et al. 1996). These waves
are still periodic in time and the wave crest maintains its spatial symmetry. The wave
profile remains two-dimensional except at the crest region where breaking occurs.
(In Taylor 1953, the extreme standing waves were three-dimensional because of a
moderate tank aspect ratio of 2.17:1.) Because of the dimpled crest, the limiting wave
steepness has a somewhat ambiguous definition. A capacitance probe at x = 0 gives
H/λ ≈ 0.193 at incipient breaking (figure 6a), while the peak-to-trough height from
the spatial profile is H/λ ≈ 0.21 (Jiang et al. 1996). The latter value is very close to
the limiting height for a free standing wave (Schwartz & Whitney 1981; Mercer &
Roberts 1992) even though the waveforms are significantly different.

A dimpled wave crest with small-scale breaking remains seemingly periodic in time
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Figure 7. Illustration of three different modes during period-tripled breaking. T is the temporal
wave period before period tripling (twice the forcing period). Each crest feature appears at the
endwalls of the tank 1.5T after it appears at the centreline.

when the forcing amplitude is close to, but less than, a critical value Fb. Above
this threshold, however, the gentle breaking gives way to period-tripled breaking:
the subharmonic wave on an initially flat surface again develops a dimpled crest,
but now never becomes truly periodic before the sharp crest appears and violent
breaking follows. Our fully nonlinear Cauchy-integral method fails near wave breaking
and therefore cannot predict the observed period tripling. We now focus on the
experimental results.

4.1. Period-tripled breaking: spray and splash

The period-tripled breaking consists of three distinct modes: A, B, and C, as illustrated
in figure 7. The maximum wave profile in mode A is characterized by its high elevation,
sharp crest angle and violent breaking and drop formation. Mode B follows with a
dimpled or flat crest and double plungers to the sides of the crest. Mode C has a round
(non-breaking) crest similar to Penney & Price’s (1952) solution. The sharp-crested
mode A reappears after mode C, forming a recurrent cycle with a three-wave period.
The mode-A wave was never realized in our experiments on steep, non-breaking
waves.

A series of images recorded at 50 Hz shows the three breaking modes for a forcing
amplitude of 4.60 mm and a forcing frequency of 3.20 Hz. Mode A (figure 8a) has
a sharp crest angle less than 30◦. The geometry of the maximum wave profile is
similar to the hyperbolic waves predicted by Longuet-Higgins (1980). Water is ejected
at the maximum crest elevation (figure 8a, t = 0.20 s) and forms columnar drops.
The jet then eventually collides with the water surface, first forming a crater, then a
rebounding jet and entrained air (bubbles). Significant acoustic energy is generated
at this instant. Splashes, remnants of the impinging process, are obvious in the first
frame of figure 8(c). (Note that we have not separated the sets of images by the
exact underlying wave period T = 0.62 s, nor have we presented an entire three-
wave-period sequence.) The rebounding jet at the tank centre lasts more than half
a wave period, from 0.44 s to 0.76 s, creating turbulent motion at the wave crest.
The stronger double plungers to each side of the crest (0.72 s) enhance dissipation in
the entire wave field as compared to mode C (figure 8e, f), which has no energetic
breaking. Note that the last image of figure 8(f) shows mode B at the endwalls 1.5T
after it occurs at the tank centreline (t = 0.72 s).

Mode A is essentially two-dimensional. Except for small perturbations, modes B
and C are uniform along the tank-width direction as well. A similar sequence of
breaking occurs at the tank endwalls with a phase difference of 1.5T . However, the
maximum elevation is not as high as that at the tank centre (t = 1.04 s in figure 8d),
jets are only formed occasionally, and the subsequent splash is less intense. All these
can be attributed to the viscous boundary layer and the stabilizing effect of the wall.
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In fact, avoiding sidewall boundary layers near the wave crest was our motivation
for studying the fundamental (full-wavelength) mode rather than the sloshing (half-
wavelength) mode.

Figure 9 shows the edge-detected profiles corresponding to figure 8. The limiting
profile in mode A has a wave crest 140 mm above the mean water level (figure 9a).
This elevation far exceeds the maximum elevation for incipient breaking (≈ 86 mm
as shown in Jiang et al. 1996). The remnants of breaking and air entrainment from
previous wave cycles appear as ripples in figure 9(a) before the maximum elevation
is reached. In mode B, the slightly asymmetric breaking plungers conceal the wave
profile immediately below on each side of the flat crest. (This shortcoming is corrected
in figure 12.) Figure 10 shows the spatial wavenumber spectrum for the entire series
of profiles in figure 9 (38 in total). Both the maximum amplitude and the median
amplitude over three wave periods are presented for each spatial harmonic. Only
the first 30 harmonics are shown as the smoothing procedure in the edge detection
makes it impossible to represent higher harmonics caused by the sharp crest (mode
A) or the double plungers (mode B). Nonetheless, the broad spectrum and the slow
amplitude decay with increasing wavenumber reflect the strong nonlinearity in the
breaking waves. It is difficult to distinguish the dominant higher harmonics from
figure 10. Only the first three harmonics have significant median amplitude over three
wave periods, but the maximum amplitudes of the first 10–12 harmonics are larger
than the forcing amplitude. Therefore our analysis on harmonic interaction will be
focused on temporal harmonics (§ 4.3).

Remaining focused on the spatial details, we examine the sharp wave in figure 11
with an average resolution of 0.4 mm/pixel. At f = 1.60 Hz, small ripples appear
on the slightly asymmetric crest (the last two frames in figure 11a) before the crest
descends and disintegrates into a water jet. The break-up process is slightly different
for f = 1.61 Hz (figure 11b). The crest is sharper, and a small water jet forms before
the maximum crest elevation is reached. The subsequent water jet is significantly less
than that for f = 1.60 Hz, creating spray. The jet collision in period-tripled breaking
is generally more intense at lower wave frequencies, e.g. f = 1.59 Hz and f = 1.60 Hz.
These differences in the breaking process are shown in § 5 to explain the frequency
effect in the total wave dissipation.

Although the first sharp crest forms an upward jet in mode A, it can also develop
into a large plunger with its crest listing to one side. The appearance of an upward
jet or an asymmetric plunger is random and does not affect the triple periodicity. A
‘leftward’ plunging breaker (figure 12a) is captured with both seed particles and dye
in the water so that both the free surface and the underlying water are illuminated
(§ 2.1). The bright rays in figure 12 are caused by refraction of the laser sheet at large
free surface curvature. Using the same technique, we demonstrate mode-B breaking
in figure 12(b). Double plungers form at each side of the flat crest and create local
‘bores’ (0.02 and 0.04 s). These post-breaking plungers ‘slide down’ the wave crest at
0.06 and 0.08 s, creating irregular motions near the surface. The bulbous centre at
0.04 to 0.08 s is caused by the rebounding jet initiated in the previous part of the wave
cycle. The bright spots beneath the wave crest (the last four frames) are entrained air
bubbles. Mode C has the least breaking as shown in figure 8, and usually no irregular
surface motions are observed as shown in figure 12(c).

4.2. Phase portrait and spectral analysis

To further illustrate the bifurcation from periodic waves to triply-periodic breaking,
the pseudo-phase plane of the mid-tank elevation signal with a delay of τ = 0.10 s
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Figure 8. The observed waveform during (a) ascending and (b) descending phases of mode A; (c),
(d) same for mode B; (e), (f) same for mode C. F = 4.6 mm, f = 1.60 Hz. The image width is
600 mm (the entire wavelength) with no vertical exaggeration. The numbers shown in the images
represent time in s.

(30 data points for the 300 Hz sampling rate) is shown in figure 13. We apply a
30 Hz low-pass filter to the time series and use a record of 50 wave cycles (9375 data
points) to construct the time-delay-coordinate portraits (embedding-space method,
e.g. Moon 1992). The reconstructed pseudo-phase portrait is topologically equivalent
to the phase plane with the elevation and its derivatives as coordinates (Packard
et al. 1980; Takens 1980). Determining a priori the embedding dimension and the
time delay τ is not trivial. For simplicity, we first restrict the reconstructed phase
space to be two-dimensional, i.e. η(t) versus η(t+ τ), even though the observed period
tripling may result from higher-dimensional dynamics. In principle, the topology of
the pseudo-phase plane is equivalent for different delay intervals τ (Mullin 1993) if
the embedding dimension is sufficiently large. A delay time of τ = 0.16T is chosen
here such that variations in the orbits are not obscured by noise in the elevation
signal.

The steep non-breaking wave (F = 4.15 mm) corresponds to a single orbit in phase
space, with clearly identifiable superharmonics in the spectrum (figure 13a, b). The
subharmonic component (f = 1.60 Hz) dominates, but there exists obvious second
harmonic content. Amplitudes of the third and fourth harmonics are an order of
magnitude lower that that of the second harmonic. ‘Noise’ in the phase orbit is
partly attributed to the small modulations exhibited in figure 13(b) as low spectral
peaks. As these spectral peaks are closely spaced at f/3 intervals, we might expect
period-tripling modulation before breaking. However, observation is inconclusive and
the wave field is dominated by the strong temporal periodicity.

For period-tripled breaking (F = 4.57 mm), three distinct phase orbits appear in
figure 13(c) corresponding to the three breaking modes. Although modulation on a
longer time scale may contribute to the noise in the inner orbits, noise in the outer
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Figure 9. The detected wave profiles for modes A, B and C in figure 8.
The vertical scale is 1.5 times the horizontal scale.

orbit for mode A is primarily the result of breaking events (note the phase-portrait
paths are broader). Larger noise in the lower half of the orbit is due to jet penetration
and rebounding during the trough phase (η(0, t) < 0). Oscillations in the upper-right
corner of the diagram (η ≈ 80 mm) reflect the variations in the sharp crest forms as
shown in figure 8(a) and figure 12(a).

Compared to figure 13(b) for the non-breaking wave, the breaking-wave spectrum
(figure 13d) has significantly-reduced amplitude for higher harmonics (4f, 5f, 6f, · · ·),
while the background noise above 3f has increased significantly. The second harmonic
for this breaking wave is as strong as that for the steep wave in figure 13(b).
The modulation frequency appears as two spectral peaks f/3 apart to the side of
f = 1.60 Hz. The upper modulation frequency components are larger than the lower
two, indicating strong modulation of both the fundamental harmonic and the second
harmonic. While the wave spectra show qualitative change between non-breaking
waves and period-tripled breaking, the forcing spectra do not. A forcing spectrum for
steep, but non-breaking waves is shown in figure 13 of Jiang et al. (1996). Even after
period tripling, the forcing spectrum (not shown) consists of discrete harmonics with
negligible background noise at all frequency including at the f/3 intervals. Therefore,
the spectral peaks at f/3 intervals are due to the nonlinear interaction amongst the
excited wave modes.

We extend the pseudo-phase diagram to three dimensions with coordinates (η(t),
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Figure 10. The maximum (hollow bar) and median (solid bar) wavenumber
spectra for profiles in figure 9 where λ = 600 mm.

(a)

(b)

Figure 11. A magnified view of the crest in mode A at its maximum elevation. (a) F = 4.57 mm,
f = 1.60 Hz. Time interval between each frame is 0.008 s. (b) F = 4.60 mm, f = 1.61 Hz. Time
interval between frames is 0.016 s. Each frame is approximately 35 mm by 60 mm. Horizontal to
vertical scale: 1:1.

η(t+ τ), η(t+ 2τ)) in figure 14. The essential feature is the same as shown in the two-
dimensional surface, figure 13(c): there exist three different orbits corresponding to
modes A–C. The dynamics of period tripling might be described by a low-dimensional
system with an embedded dimension less than three. In figure 14(a), the grey-scale
level of the trajectories is changed after every wave period and each level represents
a unique mode. Furthermore, the 3-d phase diagram reveals that the outer trajectory
(light grey) always connects to the intermediate orbit (black) and then to the orbit
with the smallest area (dark grey) and goes back to the outer orbit (light grey) again.
This represents the exact order of modes A→ B → C → A · · ·. Similar to figure 13(c),
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each frame. (a) Mode A with ‘leftward’ plunging breaker, (b) double plunger to each side of the
dimpled crest in mode B, (c) Mode C with maximum elevation at t = 0.04 s.
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Figure 13. (a) Phase diagram and (b) amplitude spectrum for the elevation signal at the tank centre.
Wave is steep, but not breaking (f = 1.60 Hz, F = 4.15 mm). The same for (c) and (d) except that
period-tripled breaking occurs with f = 1.60 Hz, F = 4.57 mm. For (a) and (c) the time delay
τ = 0.1, s = 0.16T .

we find that choosing different time delay τ only alters the shape of the orbits, but
not their width. Because of the strong dissipation through breaking, it is difficult to
determine whether the orbit width is due to random noise or represents the extent
of a torus in the phase space. A Poincaré map is constructed by taking a section
η(t) = 0 through the three-dimensional pseudo-phase diagram. This is equivalent
to choosing a wave period as the sampling delay in the time series that produces
figure 14(a). The three clusters near the upper right (and the clusters near the bottom
left) represent fixed points corresponding to the three modes. A similar Poincaré map
of the non-breaking wave shows only one fixed point corresponding to a periodic
state.

The spectrum reflects the global (averaged) characteristics; the possible interaction
in the amplitude and phase of each harmonic is not shown in the Fourier analysis.
The complete time series of wave elevation are shown in figure 15 and figure 16,
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Figure 15. Complex-demodulated elevation for steep, non-breaking wave, f = 1.60 Hz and
F = 4.15 mm. (a) The surface elevation as a function of time, (b) amplitude of the first har-
monic, (c) amplitude of the second harmonic, and (d) phase-shift difference θ2 − 2θ1.

corresponding to the phase diagrams discussed above. Digital complex demodulation,
a more versatile and informative technique in this case, is applied to demonstrate the
interaction between the first two harmonics during period tripling and is discussed in
the next section.

4.3. Recurrent breaking and the second temporal harmonic

The three steep waveforms discussed in § 3 – sharp crest in the numerics, flat and
dimpled crest in our experiments, and round crest in the Penney & Price solution –
closely resemble the waveforms that appear recurrently during period-tripled breaking.
The essential nature of period tripling may then be linked with harmonic interaction
that produces the diverse steep waveforms (§ 3). In particular, figure 13(d) shows
a strong second temporal harmonic during period tripling. The recurrence of the
three breaking modes and their likeness to the three steep waveforms suggest strong
interaction between the first two harmonics and time-dependent a1,2 and θ1,2. We
apply complex demodulation (Bloomfield 1976) to determine a1,2(t) and θ1,2(t) and to
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Figure 16. Complex-demodulated elevation for period-tripled breaking, f = 1.60 Hz and
F = 4.57 mm. (a) Surface elevation; (b) a1; (c) a2; (d) phase-shift difference θ2 − 2θ1. (e–h),
same graphs as (a–d) with magnified abscissa.

demonstrate the importance of the second harmonic during period-tripled breaking.
Details of the procedure are given in the Appendix.

We first analyse a steep wave with a dimpled crest and no breaking. The elevation
signal in figure 15(a) corresponds to the phase portrait and the Fourier spectrum in
figure 13(a, b). The demodulated a1 reaches a reasonably steady value at t = 80 s
(figure 15b). As the wave approaches periodicity, a2 grows to approximately 5 mm
(figure 15c), about 10% of the first-harmonic amplitude a1. Figure 15(d) shows that
the phase-shift difference θ2 − 2θ1 jumps to about 0.5π, resulting in a dimpled crest
form. Steep waves that we regard as temporally periodic in § 3 exhibit small but
obvious oscillations of period 3T in a1,2 after complex demodulation.

The periodic variation of a1,2 becomes much larger in figure 16(a–d) when period-
tripled breaking occurs. During wave growth, the two harmonics follow similar trends
as in figure 15(d) for non-breaking waves. The oscillations in a1,2 start around t = 55 s
and grow slowly until the first breaker and the initiation of period tripling at t≈82 s,
signalled by a jump in θ2−2θ1. Once period-tripled breaking occurs, the amplitude
variations are about 10 mm for a1 and about 5.5 mm for a2. Figure 16(d) demon-
strates that θ2 − 2θ1 oscillates between 0.3π and 1.1π, a much larger variation than
that for non-breaking waves. The direct output of complex demodulation includes an
additional phase shift that increases linearly with time. As its increase rate is exactly
f/3, this phase shift is caused by the presence of strong neighbouring frequency
components (5f/3 and 7f/3) near the second harmonic with frequency 2f. Therefore
it is an artificial phase shift due to the limitation of the complex-demodulation pro-
cedure. The actual phase-shift difference between the first two harmonics is obtained
by subtracting out this linearly increasing component and is presented in figure 16(d).

The magnified abscissas shown in figure 16(e–h) correspond to t = 100 s to
t = 120 s in (a–d). The first-harmonic amplitude a1 approximately reaches its max-
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imum as does a2 when the surface elevation is the largest (mode A), while a2 is
smaller and a1 is at its smallest value when the maximum elevation is the smallest
(mode C). During mode B, each amplitude is near its average value. Therefore the
three distinct breaking modes correspond directly to the strong oscillation of the
first two harmonics. The oscillation in η0 is neglected and the combination of a1

and a2 explains approximately 80% of the elevation variation. Applying complex
demodulation to higher harmonics shows that other harmonics are less significant:
a3 is only about 4% of a1 with a4 and a5 even smaller.

4.4. Comparison with other observations

We have shown that the first two temporal harmonics are the most significant ones
in the time series of period-tripled breaking. However, we do not yet understand the
physical mechanism responsible for period tripling. Beside the mode interaction in
parametric resonance, an even more complex factor may be the highly unsteady nature
of breaking-wave dissipation. The time scale of the breaking-induced turbulence and
its decay may be important in both triggering the sharp-crested breaking mode and
maintaining the periodicity once period tripling occurs.

It is interesting to note that similar quasi-periodic breaking occurs for Faraday
capillary waves. Goodridge, Shi & Lathop (1996) observed droplet ejection once
every 12 (sometimes 14) forcing cycles, equivalent to six wave periods as compared to
three periods in our experiments. Their observation may be interpreted as consecutive
period doubling and period tripling. Our recent experiments in a circular cylinder with
a 12 cm diameter also demonstrate period tripling for the subharmonic axisymmetric
mode: the crest tends to be more bulbous at one cycle and becomes flatter in the
following two cycles. The wave frequency is approximately 3.8 Hz. However, the
period-tripled breaking is more robust and repeatable for Faraday waves in the
rectangular cylinder.

Libchaber & Maurer (1980) observed competition between period-2 cycles and
period-3 cycles in Rayleigh–Bénard experiments. The dissipative nature of the system
seems to be critical for stable period tripling, as further shown in Arneodo et al. (1983)
for a parametrically driven pendulum and for the Henon mapping. These studies are
consistent with our observation that period tripling in Faraday waves is stable with
wave breaking and that period tripling of Faraday waves in a circular cylinder is
less robust and less repeatable without wave breaking (therefore less dissipation).
Further analysis will require a better understanding of the dissipation process of
wave breaking.

5. Energy and dissipation in breaking standing waves
We now give a brief account of the direct dissipation measurement, with an

emphasis on the averaged breaking-wave dissipation. We first estimate work per wave
period W with a non-overlapping time window. The window length is one wave
period for non-breaking waves, or three wave periods for the triply-periodic breaking
shown in figure 17. As stated in § 2.2, the growth in the wave amplitude (figure 17a)
is accompanied by large oscillation in the measured power W (figure 17b). The
difference D = W3 −W1 is small compared to the mechanical loss W1.

The time dependence of W during triply-periodic breaking is related to its unique
dissipation mechanisms. To determine the slow oscillation in W , we integrate the
force over a continuous, overlapping time window and apply a low-pass filter with
a cut-off frequency of 3 Hz. The resulting W (figure 17d) has two peaks in every
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Figure 17. (a) Wave amplitude and (b) work per wave period (power, Joule/period) for pe-
riod-tripled breaking, f = 1.60 Hz and F = 4.57 mm. (c) Surface elevation and (d) work per wave
period during period-tripled breaking for f = 1.61 Hz, F = 4.57 mm.
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Figure 18. Dimensionless dissipation rate for non-breaking (N �) and breaking waves (4 �) as a
function of forcing amplitude. The error bars represent standard deviations due to non-overlapping
windows for non-breaking and breaking waves. (a) f = 1.59 Hz (N 4), f = 1.60 Hz (� �),
(b) f = 1.61 Hz (� �), and f = 1.62 Hz (N 4).

three-wave cycle (1.88 s). For example, between t = 2 s and t = 4 s, the first W
maximum occurs slightly less than one period after the maximum elevation (mode
A). The second peak occurs one and a half periods later. The most energetic breaking
is the impinging jet as shown in § 4.1 and the ensuing air entrainment that lags the
maximum wave elevation by one half-period. To compensate for this peak energy
loss, there should be increased energy input, corresponding to the first peak in W .
Since the same dissipation process occurs exactly one and a half periods later (at the
two ends of the tank), the second peak in W is also expected.

The wave dissipation D is estimated by the procedure given in § 2.2. For example,
D in figure 17(a, b) is calculated by subtracting the average W in stage 1 (t = 0–10 s)
from the average W in stage 3 (t = 100–200 s). Our experiments have three control
parameters: wavelength λ (limited by the tank configuration), forcing frequency ωf
and forcing amplitude F . Wave amplitude a and frequency ω1 are both dependent
parameters. Therefore, the dimensionless dissipation rate ε can be expressed as

ε =
4π2D
ρgbλ3

= ε

(
F

λ
,
ωf

2ω1

)
(5.1)

where b is the tank width. Dimensionless ε values are presented in figure 18 for four
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f(Hz) Fb (mm) ε1 ε2 εbreak SD

1.59 4.40 0.0060 0.0115 0.0055 0.0010
1.60 4.51 0.0065 0.0112 0.0047 0.0012
1.61 4.55 0.0043 0.0079 0.0036 0.0006
1.62 4.71 0.0036 0.0060 0.0024 0.0008

Table 2. Wave frequency f, threshold forcing amplitude Fb, and the corresponding dissipation
rates. ε1, dissipation rate for non-breaking waves; ε2, dissipation rate for triply-periodic breaking;
εbreak = ε2 − ε1, dissipation rate due to breaking. SD: the standard deviation for εbreak .

different forcing frequencies: 3.18, 3.20, 3.22 and 3.24 Hz. The dissipation data are
slightly more scattered in figure 18(b) for f = 1.61 and 1.62 Hz than in figure 18(a)
for f = 1.60 and 1.59 Hz. In the absence of breaking, ε slowly increases with forcing
amplitude, although some data decrease at forcing amplitudes just below Fb, the
threshold forcing for breaking. A boundary-layer estimate predicts a quadratic growth
of dissipation rate ε for increasing wave amplitude. For period-tripled breaking, ε
jumps to about twice the value for non-breaking waves, but does not increase for
larger forcing amplitude. Therefore about 5% of the energy is dissipated over one
wave period for steep, but non-breaking waves (based on the energy of a linear
standing wave, E = 1

4
ρgbλa2), while breaking increases the dissipation per temporal

period to about 10% of the total wave energy.

The error bars in figure 18 represent the data scatter caused by the use of non-
overlapping time windows in the dissipation estimate. Their large values reflect
partially the modulation in the steep waves and the strong interaction during triply-
periodic breaking (figure 17c). Since we are interested in the average dissipation,
we use overlapping time windows of 50 wave periods for integration and denote
the average dissipation per wave period as D. The standard deviation is drastically
reduced to 0.5% for non-breaking waves and is reduced to 2% for breaking waves
by replacing D in equation (5.1) with D.

Breaking-wave dissipation εbreak is defined as the increase in wave dissipation from
a non-breaking wave (ε1) to triply-periodic breaking (ε2), our best and only estimate
for the breaking case. For each forcing frequency in figure 18, the dissipation rate ε
has considerable scatter for both triply-periodic breaking and non-breaking waves.
Thus, we calculate ε1 by averaging the dissipation rates for the largest four forcing
amplitudes with F < Fb, where Fb is again the threshold forcing amplitude for
breaking. As a result, ε1 represents viscous and contact-line dissipation close to the
limiting wave steepness. Similarly, we estimate ε2, the dissipation due to breaking plus
viscous and contact-line dissipation, by averaging the dissipation rates for F > Fb
(hollow symbols in figure 18).

Table 2 lists Fb, ε1, ε2, and εbreak for the four wave frequencies. The largest
breaking-wave dissipation εbreak = 0.0055 ± 0.0010 occurs for f = 1.59 Hz, consis-
tent with its largest total wave dissipation ε2. Increasing forcing frequency reduces
the breaking-wave dissipation. We believe this frequency dependence is related to the
effect of forcing frequency on the jet formation (spray) and the collision intensity
(splash). With lower forcing frequency, the sharp crest has more time to develop,
thus the subsequent impinging process generates more air entrainment and more
turbulence.
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6. Concluding remarks
We further verify that the steep standing wave forms observed by Jiang et al.

(1996) are the result of interaction between the first and second temporal harmonics.
Increasing the forcing amplitude leads to a wave steepness very close to the limiting
steepness for gravity standing waves. Gentle breakers form at the crest as shown in
Jiang et al. (1996) but are unstable at even larger forcing amplitude. Period tripling
follows with three breaking modes – mode A: sharp crest forms, the upward jet or a
large plunger to either side impinges on the wave surface; mode B: flat or dimpled
crest forms, with outward plungers to each side of the crest; mode C: the crest is
round and smooth with no significant breaking. The most conspicuous feature of
period tripling is its robustness. With large forcing amplitude, it appears at every
wave frequency close to the linear natural frequency.

The most energetic breaking of standing waves is exemplified by the jet break-up
in mode A and the subsequent air entrainment. Secondary breaking occurs in mode
B with spilling and small plungers to each side of the flat crest. The sharp crest in
mode A has an angle less than 30◦, and it remains two-dimensional until the upward
jet disintegrates. These steep waveforms and breaking modes can cause drastically
different radar returns due to wedge-scattering mechanisms.

The phase portraits for both non-breaking waves and period-tripled breaking
are reconstructed from the wave elevation signal at x = 0. A periodic steep wave
corresponds to a single orbit in the phase diagram, but modulation noise signals quasi-
periodic behaviour. The phase diagram for period-tripled breaking is qualitatively
different – three orbits appear corresponding to each breaking mode. Period tripling
manifests itself in the amplitude spectrum as discrete spectral peaks f/3 apart, where
f is the subharmonic wave frequency. The wave spectrum for period-tripled breaking
also shows larger background noise than that for non-breaking waves. The first
two temporal harmonics (f and 2f) remain strong during period tripling, but the
amplitudes of harmonics above 3f are significantly reduced. Complex demodulation
of the elevation signal reveals strong variations in the first two temporal harmonics
during period-tripled breaking. Furthermore, the interaction between these two modes
corresponds directly to the three breaking modes.

We provide direct measurements of the energy dissipation due to viscous and
contact-line effects, and due to breaking. The instantaneous support force is integrated
with respect to tank displacement to provide the system energy input. Wave dissipation
is then obtained through energy balance for a periodic wave field. Breaking waves
approximately double the total wave dissipation over non-breaking waves. Temporal
variations during triply-periodic breaking are attributed to the strength of the different
breakers: mode A provides the largest dissipation because of the re-entrant jet and air
entrainment. Strong frequency dependence is shown in both the total dissipation rate
ε and the dissipation rate due to breaking εbreak . The maximal εbreak is 0.0055± 0.0010
for f = 1.59 Hz.

The outstanding questions concern the precise mechanism that triggers and main-
tains the period tripling, even under violent breaking-wave conditions, and the con-
dition, at least qualitatively, for nonlinear interaction between admissible harmonics.
The phase diagram and complex-demodulation analyses suggest that these two ques-
tions are closely related. In addition, the wave spectrum suggests period tripling even
prior to breaking and a strong second harmonic for both non-breaking waves and
period-tripled breaking. Modelling internal resonance by lower-mode truncation has
been explored by many for three-dimensional waves (Feng & Sethna 1989; Nagata
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1989; Miles & Henderson 1990), while similar models for two-dimensional waves
remain to be solved. We are currently examining analytical and numerical models to
qualitatively describe period tripling.

Finally, we mention a similarity between our results with those of Srokosz (1981).
A fully nonlinear boundary-integral method is used in Srokosz’s work to simulate
gravity standing waves and the effect of wave reflection on breaking. In two particular
cases, Srokosz used linear standing waves with unrealistically large amplitude as initial
conditions. Although his computations failed after about one half wave period, they
show either a very high wave with a sharp crest at the centre, or a flat crest with
two plungers extending to each side. The similarity between his results and breaking
modes A and B again demonstrates the unique nonlinear dynamics shared by both
free standing waves and Faraday waves. The true nature of the strong nonlinearity
in standing waves can thus be captured by careful Faraday wave experiments.

This research was supported by the Office of Naval Research partially under
contract number N00014-93-1-0867 and partially under the University Research Ini-
tiative – Ocean Surface Processes and Remote Sensing at the University of Michigan,
contract number N00014-92-J-1650. The suggestions of two referees are gratefully
appreciated.

Appendix. Digital complex demodulation
Complex demodulation, as described by Bloomfield (1976), may be regarded as a

local harmonic analysis that offers both the amplitude and the phase of a certain
frequency component in a time series. In the case of signals with multiple frequency
peaks, the task of distinguishing between the frequency components of interest and
other components or noise can be achieved by a bandpass filter centred about the
frequency of interest. However, to be consistent with Bloomfield (1976), we first shift
the frequency by an amount −ω, then apply a low-pass filter to obtain the modulated
amplitude and phase of the carrier wave with frequency ω. The pass band is chosen
to remove all the sum frequencies, higher harmonics, and noise, but to admit the
bandwidth of the carrier wave due to amplitude and phase modulation. Procedures
and algorithms are available in Bloomfield (1976). Note that our elevation signal
has discrete harmonics, i.e. the signal is narrow-banded. More sophisticated multi-
resolution techniques such as wavelet analyses are not necessary for our purpose as
we are not interested in the high-frequency components of the signal.

This flexible technique is most suited for the simultaneous measurement of the am-
plitude and phase of a narrow-banded modulated carrier signal as a function of time.
However, it has several underlying assumptions. (1) The carrier signal must be narrow-
banded around the target frequency for which there is a close but not necessarily
accurate estimate. (2) The original amplitude and phase modulation before sampling
must be smooth and continuous. (3) The modulation frequency is much smaller than
the carrier frequency. The first two assumptions are satisfied for the case of a forced
Faraday wave. Knowing that the wave frequency is one half of the forcing frequency,
we want to establish the connection between period tripling and the modulation of the
first and the second temporal harmonics. Even for triply-periodic breaking, the modu-
lation for the low-frequency harmonics can still be assumed to be smooth as the break-
ing event is local and affects only the higher frequency harmonics as shown in § 4.2.

The third assumption is related essentially to the filter design. A low-order filter
will suffice when the modulation signal is extremely narrow-banded. Since the time
scale of the modulation is only three times that of the carrier signal in the period
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Figure 19. Effect of sampling rate on the FIR filter design with (a) fs = 300 Hz; (b) fs = 30 Hz.
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tripling, special care must be taken in the filter design: it must admit the inherent 1
3
f

sidebands around the carrier signal with frequency f, while blocking the 2
3
f sidebands

due to the modulation of adjacent harmonics. For the time series herein, we use
digital linear-phase FIR filters designed by the least-squares minimization method
(figure 19). The linear phase response is critical to accurate phase angle measurement.
The least-squares minimization approach gives a flatter response in the pass band
than most windowing approaches, while maintaining a good blocking response in
the stop band. More information about this type of filter can be found in standard
Digital Signal Processing (DSP) texts (e.g. Proakis & Manolakis 1996).

The digital filter chosen for complex demodulation (figure 19) has three bands: a
pass band with a cut-off frequency at [0, 1

2
f−δ], a transition band at [ 1

2
f−δ, 1

2
f+δ],

and a stop band for [ 1
2
f+δ, 1

2
fs]. Here, 2δ is the transitional bandwidth and 1

2
fs is the

Nyquist frequency (fs: sampling frequency). The period-tripled modulation sets an
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upper limit for the transitional bandwidth as we must exclude the modulation signal
caused by other harmonics. δ = 1

32
f is found to give a good transitional response.

However, as the order of such FIR filters (number of coefficients) increases for a
narrower transition band, 6000 coefficients are required for a time series sampled at
300 Hz. Such an operation is expensive and impractical (with Matlab software on an
HP9000 workstation).

This problem is alleviated by reducing the sampling frequency, thus reducing the
filter order proportionally (figure 19). Since we are interested in the modulation
frequency around 1

3
f ≈ 0.53 Hz, a reduced fs = 30 Hz is sufficient. Such an operation

is called decimation in DSP (Proakis & Manolakis 1996). In figure 19, two filters with
different sampling frequencies are shown using the above specifications (f=1.60 Hz).
Using the same number of coefficients (600), a filter with fs = 30 Hz has a much flatter
response in the pass band, a much quicker response decay in the transition band and
a better stop-band response. The transition band reduces the signal amplitude by
−20 dB.

Hence, we first transform the time series (sampled at 300 Hz) to fs = 30 Hz,
and shift the whole record by −f in the frequency domain (f is the carrier wave
frequency). We then apply the FIR filter twice to the shifted time series in both
the forward and backward direction. This eliminates any phase lag introduced by
the filtering and doubles the filter order. To obtain the amplitude and phase of
the second harmonic, we only need to change the shifting frequency from −f to
−2f. A sample signal with period-tripled modulation is shown in figure 20. The
demodulated amplitudes for the first and second harmonics exhibit slight differences
with the actual amplitudes, but the phase difference agrees more closely. Complex
demodulation provides the temporal evolution of a frequency harmonic, unavailable
from other time-series analysis.
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